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Validation of the approach

“Opening the black box” of a full-rank network
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A full-rank network is trained on a context-dependent DM task:
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With backprop, a rank-1 network su�ces to capture neural activity:
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Speci�c predictions for inactivations on the original network can be done:

Reverse-engineering rank-1 connectivity shows role for two populations:
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No green pop. No purple pop.

Take-home messages
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This method is very robust to subsampling

This method can give insights into the mechanism used by a full-rank network

We generate trajectories from low-rank RNNs pre-trained on 4 tasks.
Both activity and connectivity can be retrieved.

We propose a new latent variable model based on low-rank RNNs 
[Mastrogiuseppe & Ostojic 2018]

We train low-rank RNNs to reproduce neural activity neuron-by-neuron,
with three di�erent algorithms

We validate our approach by generating low-rank trajectories from
low-rank RNNs and retrieving their connectivity with our method.

We also train low-rank RNNs to reproduce activity of a pre-trained
full-rank RNN. This leads to deep insights into the mechanism
used by the full-rank RNN, and to predictions on the role of di�erent
neurons

Finally, we show how our approach is very robust to subsampling, 
which is an experimental constraint.
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[Dubreuil, Valente et al. 2020]
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Results for networks �tted to subsampled trajectories of a full-rank, 1000 neurons network

Low-rank networks are a model that is both mechanistic, interpretable, and trainable,
directly linking connectivity to dynamics.

They have a natural interpretation in terms of latent variables.

They can �nally help reverse-engineer black-box mechanisms in full-rank RNNs,
and help reduce their complexity (”distil” them).
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