Inferring low-rank network models from neural activity
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Abstract Approach: fitting low-rank RNNs to neural recordings
» Trained RNNs can offer good descriptions of
collective neural activity, but are hard to interpret.
» Low-rank networks keep similar characteristics brain o/ Neural data Low-rank network }5\, Low-d
yet offer great intepretability. 1= \ m )—— N dynamics
» We present LINT (Low-rank Inference from Network Infer 7
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» Our method retrieves low-dimensional subspaces RNN M J— mOpm7 “irf 4. &mechanism
from neural activity and neural mechanisms
from which it arises.
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