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Abstract
We propose a new latent variable model based on low-rank RNNs 
[Mastrogiuseppe & Ostojic 2018, Beiran et al. 2021, Dubreuil  et al. 2022]

We train low-rank RNNs to reproduce neural activity neuron-by-neuron.

We validate our approach by generating low-rank trajectories from
low-rank RNNs and retrieving their connectivity with our method.

We also train low-rank RNNs to reproduce activity of a pre-trained
full-rank RNN. This leads to a compact model of the initial network,
and testable predictions on inactivations of groups of neurons.

Finally, we apply our method to neural recordings of macaque PFC,
showing how our approach retrieves low-dimensional dynamics
and a compact description of a network that generates them.
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[Dubreuil, Valente et al. 2020]

[Mastrogiuseppe & Ostojic 2018]
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Approach: �tting low-rank RNNs to neural recordings
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“Opening the black box” of a full-rank network
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A full-rank network is trained on a context-dependent DM task:
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With backprop, a rank-1 network su�ces to capture neural activity:
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Speci�c predictions for inactivations on the original network can be done:

Reverse-engineering rank-1 connectivity shows role for two populations:
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This method can give insights into the mechanism used by a full-rank network

[Mante, Sussillo et al 2013]

[Dubreuil, Valente et al. 2020]

PCA on trajectories:

Take-home messages

Neuron subsampling
This method is very robust to subsampling

Results for networks �tted to subsampled trajectories of a full-rank, 1000 neurons network

Low-rank networks provide a compact and interpretable description of network dynamics.

Fitted to neural data, they provide low-dimensional dynamics and testable predictions.

They can be applied to understand full-rank RNNs, as well as to neural recordings.
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Low-rank networks can capture neural activity recorded in behavioral tasks.
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lrRNN �tted by backpropagation.
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