Processing information stored in working memory by modulating effective connectivity

Adrian Valente, Alexis Dubreuil, Srdjan Ostojic

LNC, Ecole Normale Supérieure, PSL Research University, Paris, France

u(t)

Introduction

Comparison between a stimulus and an item stored in memory requires flexible neural responses. How can we implement them with recurrent connectivity?

We use low-rank RNNs [1] as a tool to "open the black box" of trained RNNs

Approach:

Train low-rank Construct a class **Reverse-engineer** RNNs trained RNNs of solutions

Methods

RNN equations:

 $\tau \frac{dx}{dt} = -\vec{x} + W_{rec}\vec{\Phi}(\vec{x}) + u(t)\vec{W}_{in}$ output: $z(t) = \vec{W}_{out}^T \vec{\Phi}(\vec{x}(t))$ with $\Phi_k(\vec{x}) = tanh(x_k)$

Low-rank connectivity [1] :

$$W_{rec} = \frac{1}{N} \sum_{k=1}^{K} \vec{m}_k \vec{n}_k^T$$

-> K-dimensional dynamics

$$[x_i] = \kappa_1 m_1^1 + \dots + \kappa_K m_1^K$$

$$\dot{\kappa}_i = F(\kappa_1, \dots, \kappa_K)$$

Training: BPTT on the \vec{m}_k and \vec{n}_k

-> 2 fixed points for memory, reused for decision -> XOR implemented by an input-induced limit cycle

100

100

time

-5.0^{___}

Mechanism: control of dynamical landscape via effective connectivity

₉(t)

2D equivalent system:

$$\dot{\kappa}_1 = -\kappa_1 + \tilde{\sigma}_{n_1m_1}\kappa_1 + \tilde{\sigma}_{n_1m_2}\kappa_2 + \tilde{\sigma}_{n_1W_{in}}u(t)$$

$$\dot{\kappa}_2 = -\kappa_2 + \tilde{\sigma}_{n_2m_1}\kappa_1 + \tilde{\sigma}_{n_2m_2}\kappa_2 + \tilde{\sigma}_{n_2W_{in}}u(t)$$

Functional overlaps with 2 populations:

 $\tilde{\sigma}_{ab} = \sigma_{ab}^{(1)} \langle \phi' \rangle_1 + \sigma_{ab}^{(2)} \langle \phi' \rangle_2$

Jacobian of 2D system:

$$F'(\mathbf{I}) = \begin{pmatrix} \tilde{\sigma}_{11} - 1 & \tilde{\sigma}_{12} \\ \tilde{\sigma}_{21} & \tilde{\sigma}_{22} - 1 \end{pmatrix}$$

Reconstructed solution:

Modulation of $ilde{\sigma}_{21}$

No input:

 $\tilde{\sigma}_{21} = 1 \times 1 + (-1) \times 1$

 $\sigma_{21}^{(1)} = 1$

input A saturates pop 2 input B saturates pop 1

Input B:

 $F'(\mathbf{I_A}) = \begin{pmatrix} 1.1 & 0.3 \\ 0.3 & 0.8 \end{pmatrix}$

Summary

- low-rank RNNs offer an interpretable and analytically tractable approximation to full-rank RNNs
- We have found a mechanism for flexibly transforming the dynamics of a neural circuit when an input is received
- This mechanism points to the complementary roles of rank and cell populations for implementing computations

Reference

[1] F. Mastrogiuseppe, S. Ostojic. Linking connectivity, dynamics and computations in low-rank recurrent neural networks. Neuron. 2018