
Reverse-engineering low-rank recurrent
neural networks

Adrian Valente

August 2019

Under the supervision of:

Srdjan Ostojic,

Laboratoire de neurosciences cognitives et computationnelles,

ENS Paris

Abstract

Some cortical computations have recently been interpreted in the context of
dynamical systems, and it has been shown how features like stable points and
low-dimensional manifolds can explain how they are implemented in the brain.
However, a mechanistic explanation of how these dynamics arise from the con-
nectivity between neurons is still lacking. The low-rank recurrent neural network
[MO18] is a recently proposed model where the links between connectivity and
dynamics can be understood. In this work, we put this model to application by
training low-rank RNNs to do basic cognitive neuroscience task, and by reverse-
engineering them to understand how the connectivity found by the training
algorithm implements the desired computation. As in [MO18], we find that the
geometrical arrangement between left and right eigenvectors of the connectiv-
ity matrix is a key component, but more surprisingly we find that the neurons
of trained networks seem to spontaneously organise themselves in different cell
populations with different connectivity statistics, and that this cell diversity
gives rise to a very rich repertoire of dynamical behaviors.

Acknowledgments

I wish to express my deepest gratitude to Srdjan Ostojic for enabling me to
do this internship, and to all members of the LNC2 that have welcomed me,
especially Alexis Dubreuil and Manuel Beiran. I also wish to thank Wulfram
Gerstner for his kind guidance at EPFL.

5

Contents

1 General formalism 10
1.1 Theoretical framework . 10
1.2 Experimental setup: trainable RNNs 11

1.2.1 Degeneracy . 12
1.2.2 Training tricks . 12

2 Rank one networks 14
2.1 Fixed points of the autonomous system 14
2.2 Effect of a constant input . 15

3 Study of the random dots motion task 19
3.1 Task . 19
3.2 Network task . 19
3.3 Results . 20

4 Rank two networks 22
4.1 Phase portrait of the autonomous system 22
4.2 Effect of multiple populations . 23
4.3 Effect of a constant input . 28

4.3.1 Effective overlap modulation 28

5 Study on the delayed match-to-sample task 32
5.1 Task and setup . 32
5.2 A first solution . 33
5.3 A second solution . 39
5.4 Further work . 42

6

Introduction

Patterns of activity in the brain are thought to be the basis for numerous as-
pects of behavior, including decision making or memory. In the past, a certain
number of these brain patterns have been explained by studying the output
of individual neurons to environmental variables, leading to the tuning curve
approach, which has had some successes. However, limits of this approach have
become apparent in the recent years. Notably, it was shown that in many areas,
neurons exhibit mixed selectivities (their responses being determined by a high
number of factors), and variable selectivities (their response profile varying with
time). These observations have lead instead to a focus on networks of neurons
[Yus15].

Recent progress in measurement methods, notably in multi-electrode arrays
and calcium imaging have helped this paradigm shift by enabling simultaneous
recordings of hundreds of neurons. Studies of these recordings have shown to be
particularly informative about some complex and high level variables, for exam-
ple in decision making or timing tasks [MSSN13, WNHJ18]. Indeed, although
neural responses seem complex and unpredictable when looking at individual
neurons, simple descriptions become apparent when looking at the activity of
a whole assembly of neurons embedded in a very high-dimensional space (the
state space) and applying dimensionality reduction algorithms to it [CY14].

These observations are related to the hypothesis that assemblies of neurons
can be understood as dynamical systems, and that they exhibit features such
as fixed points or limit cycles that best explain how a network can perform a
particular task [Sus14, BM09]. Although one can uncover these dynamics from
recordings, the question of understanding how they emerge from the wiring of
neural circuits remains unanswered. Indeed, a mechanistic model linking con-
nectivity to dynamics in neural networks is still out of reach, notably because
of the complexity induced by recurrent circuitry [GG15, MO18].

A model that can be useful in understanding this relation is the artificial
recurrent neural network (RNN). By taking very simple hypotheses (one sin-
gle activity variable per neuron, related to firing rate by a non-linear transfer
function), this network has been able to reproduce complex activity patterns
recorded experimentally. It can be trained with mathematical optimization

7

algorithms to exhibit a particular behavior, and very strikingly, even when
trained not to reproduce the exact recorded activity but only the behavior,
lots of similarities can be found between the activity patterns of trained RNNs
and biological networks [MSSN13, WNHJ18]. This raises the hope that a good
understanding of RNNs can be useful in understanding how biological networks
perform computations.

However, a theoretical understanding of RNNs is currently lacking. The
method used to train them does not give much insight into how they actually
accomplish a task, which is why they are often considered as ”black boxes”
[SB12]. Recently, Mastrogiuseppe and Ostojic have proposed such a theory in
the special case of RNNs whose connectivity is low-rank [MO18]. This special
case is particularly interesting, not only because it is mathematically tractable,
but also because it relates to the fact that measured activity during a task
tends to be explained by a very low number of dimensions [CY14], and that a
low-dimensional activity is one characteristic of low-rank RNNs. Moreover, it
appears that low-rank approximations of connectivity matrices can retain some
of their computational characteristics. For all these reasons, we believe that an
understanding of the emergence of dynamics in low-rank RNNs can shed light
on the mechanisms of higher rank RNNs and ultimately of biological networks.

To study how low-rank RNNs are able to perform a task, and what limits
rank imposes on computations, we apply the following systematic procedure:

• we train by standard optimization techniques (e.g. gradient descent) an
RNN that we force to have a certain rank on a task,

• we reverse-engineer the obtained network by examining its patterns of
activity and its dynamical properties, and link them to properties of the
connectivity matrix. This leads us to hypotheses concerning the form that
the connectivity matrix should take in order for the network to accomplish
the task.

• we test our hypotheses by trying to build a network able to accomplish
the task ”by hand” (ie. without training), by sampling the coefficients
from well-chosen distributions.

Along with this ”experimental” procedure, we develop the theory linking
the connectivity matrix to the network dynamics in some particular cases. This
work has led us to understand that a fundamental parameter controlling what a
network is able to accomplish, beyond the rank, is the number of populations it
contains. Indeed, even a very low rank network can exhibit rather complex dy-
namics by combining various groups of neurons, each with different connectivity
statistics, in a single low-rank structure. Moreover, trained networks seem to
naturally exhibit these different neural populations, although it had never been
enforced by the training procedure. It is particularly surprising to see a biolog-
ical feature emerge naturally as a result of training general purpose networks.

8

This observation raises the idea that cell populations could be an essential com-
putational tool. It bridges the gap between the general purpose RNN model
and more classical models of computational neurosciences that combine differ-
ent populations of neurons.

In this report, we will gradually develop our current understanding of low-
rank networks by examining first rank one network and then rank two networks.
For each case, we will start by developing the theory and exploring the possible
behaviors with simulations. Then we will use the developed tools to reverse-
engineer actual low-rank RNNs trained on specific tasks (random dots motion
for the rank 1 case, delayed match-to-sample for rank 2).

9

Chapter 1

General formalism

1.1 Theoretical framework

We will throughout this report follow the formalism that has been developed in
[MO18].

We will thus consider the classical model of the rate recurrent neural network,
where each neuron receives an input current xi(t) obeying the rate equation:

τ ẋi(t) = −xi(t) +

N∑
j=1

Jijφ (xj(t)) + Ii (1.1)

where I represents the input to the network, J is the connectivity matrix
(vectors and matrices will be in bold font), and φ the transfer function of the
units, for which we choose the hyperbolic tangent for the remainder of this
report.

We will often write this equation in matrix form

τ ẋ(t) = −x(t) + Jφ(x(t)) + I

where all vectors are in bold font and we take φ applied to a vector to mean
the elementwise application of the function.

In [MO18], the connectivity matrix is considered to be the sum of a struc-
tured low-rank matrix and of a random gaussian matrix:

Jij = gχij + Pij (1.2)

where χij
iid∼ N (0, 1) and P is the low-rank component that we can write as

a sum of outer products

Pij =
1

N

K∑
k=1

m
(k)
i n

(k)
j (1.3)

10

with K � N and the m(k) and n(k) are vectors of dimension N.
In [MO18], authors have shown that if the noise component is sufficiently

small, then the activity of the network is essentially equivalent to the one in-
duced by the low-rank component only. In particular, this is the case for g < 1.
Hence, for our purposes, we will ignore the noise component and focus on purely
low-rank networks, by taking J = P.

An important observation is that in this case, for the autonomous system
(I = 0), the activity decays exponentially towards the linear subspace formed
by the m(k) vectors, which is stable by the differential equation. Hence, one can
study the system by restricted dynamics on this hyperplane and still get all the
necessary information about its evolution, since all fixed points and limit cycles
are contained in it.

1.2 Experimental setup: trainable RNNs

In this work, we will focus not only on giving possible theoretical solutions
but we also wish to train RNNs on actual tasks using standard optimization
techniques, in order to see what interesting solutions are found by the algorithm
and if we are able to reverse engineer them.

For this, we have implemented two trainable RNNs, a full-rank and a low-
rank one, that I will briefly describe.

The full rank RNN implements the equation:

xt+1 = xt + σηt + α(−xt + Wrφ(xt) + WiIt) (1.4)

and gives a readout:
zt = wT

o xt (1.5)

where the matrices Wr, Wi and the vector wo are the trainable parame-
ters, trained by gradient descent (or sophisticated versions like Adam) on the
training data. The term σηt in (1.4) indicates white noise that is applied to
each neuron to account for internal variability in neuronal processes. Note that
here the actual input to the network is represented by WiIt, and It is a vector
containing the different parameters that we wish to feed to the network. Finally,
the parameter α accounts for both the time constant of the model and the in-
tegration timestep: α = dt/τ , where we typically use dt = 20ms and τ = 100ms.

In a similar fashion, the low-rank RNN implements the equation:

xt+1 = xt + σηt + α(−xt + MNTφ(xt) + WiIt) (1.6)

with the readout (1.5), where M and N are both matrices of size N ×K for
a network of size N and of rank K. They are trainable parameters, along with
the input and output weights.

11

Figure 1.1: Simplified representation of the full and low rank RNNs used

1.2.1 Degeneracy

The decomposition of the recurrence weights in two matrices Wr = MNT

introduces a degeneracy, since there are multiple ways to decompose the same
Wr with this form. However, one way to make this decomposition unique is
to force M and N to be orthogonal matrices, effectively making this a singular
value decomposition of Wr. Hence, we will apply after training a normalization
step to our low-rank networks, applying first an SVD:

USVT = SV D(MNT)

and then setting:
M = U

√
S

N = V
√
S

where we apply the square root to each of the elements of the positive diagonal
matrix S.

1.2.2 Training tricks

Training so-called ”vanilla RNNs” (ie. RNNs that do not use gating tricks, like
our model) is notoriously hard in the field of machine learning. This is balanced
by the fact that we train on tasks that are extremely simple compared to classical
ML tasks. However, when focusing on very low-rank networks, training can still
be very long to converge. Here are 3 tricks that we have found to be useful to
accelerate training:

• Shaping: traditionally in behavioral experiments on animals, trainers start
with simple tasks that are gradually complexified. This approach has
been also exploited in ML, with so-called curriculum learning. We have

12

exploited it, for example by training a network in the DMS task first with
shorter delays and then gradually increasing the delay.

• Truncating a high-rank network: training a full-rank RNN is usually eas-
ier than a low-rank one. Interestingly, we noticed than when truncating
the connectivity matrix of a full-rank network (by keeping the k largest
singular values), the network can often perform equally well down to a
rank of around 10, and that even when bringing it to an extremely low
rank like 1 or 2, it then needs very little training to be able to accomplish
the task again. It can thus be a good strategy to initialize our low-rank
network with a structure taken from a high rank RNN. Moreover, this fact
points to an interesting property of full rank RNNs that deserves to be
studied in further work.

• Modification of the scalings: to ease gradient propagation, we have found

useful to replace equation (1.3) by Pij =
∑K
k=1m

(k)
i n

(k)
j (remove the 1/N

factor) and initialize the coefficients to be of order 1/
√
N instead of 1.

13

Chapter 2

Rank one networks

To get a first intuition of the interest of studying low-rank networks, we will
focus on the simplest case of rank one networks, and see how analytical solutions
can shed light on empirical observations.

In the case of rank one networks, the equation (1.1) reduces to:

τ ẋi(t) = −xi(t) +
1

N

N∑
j=1

minjφ (xj(t)) + Ii (2.1)

Such a network is entirely specified by 2 vectors m and n. Moreover, as
explained above, for equation (2.1) with zero input, the activity decays expo-
nentially toward the hyperplane spanned by m (a line). Indeed, the activity can
be decomposed in:

x(t) = κ(t)m + x⊥(t)

with x⊥(t) = x⊥0 e
−t/τ . Hence, the interesting behavior of the system is

contained in the evolution of the scalar κ. The system can thus be reduced to
a 1D differential equation.

2.1 Fixed points of the autonomous system

The fixed points of (2.1) with I = 0 are aligned with m, thus we can write them
as x? = κm where κ is a solution of:

κ =
1

N
nTφ(κm) (2.2)

We will focus in this chapter on the case where the coefficients of m and n
are sampled from gaussian distributions. In this case, the r.h.s. is a sigmoidal
function (let us call it F), whose derivative with respect to κ is:

14

F ′(κ) =
1

N
nT (φ′(κm)�m) =

1

N

∑
niφ
′(κmi)mi (2.3)

where � represents the elementwise product.
The number of fixed points depends on this derivative in 0 (see figure 2.1),

which is simply the overlap between the vectors m and n:

F ′(0) =
1

N
nTm (2.4)

• if this overlap is less than 1, then there is one single fixed point in 0

• if it is greater than one, there are 3 fixed points, one is 0 and the two other
are ±x?.

An analysis of the jacobian would furthermore show that when there is only
the fixed point in 0, it is stable, whereas when there are 3 fixed points, the 0
fixed point is unstable and the 2 other are stable, hence leading to a bistable
system.

We also note that it can be easier to understand rank one networks as dy-
namics within a potential along the line spanned by m by writing:

κ̇ = −κ+
1

N
nTφ(κm) = −dV

dκ
(2.5)

which we can then visualize as in figure 2.1. Here, stable fixed points are
indicated by minima and unstable fixed points by maxima of the potential func-
tion.

2.2 Effect of a constant input

Let us now add to (2.1) a constant input I. The dynamics can now unfold along
the 2D plane spanned by m and I. However, a further look shows that they
actually develop on an affine 1D line. To see this, let us first orthogonalize I
with respect to m:

I = I‖m + I⊥

Then take the decomposition:

x(t) = κ(t)m + λ(t)I⊥

By applying (2.1) and decomposing on the basis m, I⊥, we obtain:

τ κ̇ = −κ+
1

N
nTφ(κm + λI⊥) + I‖

τ λ̇ = −λ+ 1

and we see that the second equation decays exponentially towards λ = 1.

15

Figure 2.1: Top: function F (κ) for 2 different values of overlap 1
N nTm, 2 on

left and 0.8 on right. The intersection with the line y = x in orange give the
fixed points of the system. Bottom: corresponding potential plots.

Hence, the interesting aspects of the dynamics are actually contained in the
affine line I⊥ + V ect(m) as can be seen in figure 2.2. This fact extends easily
to higher rank networks and we will reuse it along the report.

Thus, we have shown that a constant input has the effect of displacing the
line of the dynamics along an orthogonal direction of phase space. Moreover,
we will show that it can interestingly modify the dynamics.

Indeed, the fixed points are now specified by κ verifying:

κ =
1

N
nTφ(κm + I⊥) + I‖ (2.6)

Let us first deal with the term I‖: it adds a constant term to the flow on
κ, hence translating the fixed points towards a certain direction, as one can
visualize by imagining the sigmoid moving up in figure 2.1. If there were 3 fixed
points, the unstable point and one of the stable points will eventually disappear
in a saddle-node bifurcation. However, we will avoid this term in the remainder
to facilitate analyses. Let us then simply replace equation (2.6) by:

κ =
1

N
nTφ(κm + I) (2.7)

assuming I is orthogonal to m. Let us denote the r.h.s. by FI(κ).

16

Figure 2.2: 2 sets of trajectories of vector x with 2 different starting points and
3 different input intensities (same input direction), shown in the plane spanned
by m and I for a bistable network (1

N nTm = 2). Trajectories go from red
square to orange star. Notice how they quickly converge towards the stable
affine subspace of the dynamics.

There can be 2 effects in this equation:

• if I has an overlap with n, then the fixed points are shifted. Notably
FI(0) ≈ nT I, while the input is sufficiently small, showing the sigmoid
of figure 2.1 is actually shifted upwards for positive overlaps, downwards
for negative ones. This can eventually lead to a saddle-node bifurcation
between the unstable and one of the stable fixed points, and the activity
going to the only stable fixed point remaining (see figure 2.3).

• if I is orthogonal to n we still have a fixed point in κ = 0 since FI(0) = 0
(assuming n is orthogonal to φ(I), which happens except in convoluted
cases), and as we did for the autonomous system, it suffices to study the
derivative F ′I(0). It turns out that we can write

F ′I(0) =
1

N
(n� φ′(I))Tm =

1

N
nTeffm (2.8)

with � the elementwise product of 2 vectors, and where we thus define
neff = n� φ′(I). Thus, the dynamics with an input depend on what we
will call the effective overlap between m and n in presence of an input.
See figure 2.3 for an illustration.

17

Figure 2.3: Effect of an input on rank one network. Top row: network without
input. Middle row: input aligned with n. Bottom row: input orthogonal to n.
On the left, plot of F function with y = x line, on the right, potential plots of
the flow on the stable affine line of the dynamics.

18

Chapter 3

Study of the random dots
motion task

3.1 Task

We will illustrate how a rank 1 network can be trained and reverse engineered
on an actual task, called random dots motion task (RDM). This analysis will be
rather simple, but useful as a testbed to understand the more complex analysis
done on the delayed match-to-sample task.

In the task as studied in cognitive neuroscience, the subject is in front of
a monitor where, after a fixation period, a pattern of dots moving randomly
appears, with a certain coherence. Negative coherence values indicate that the
dots tend to move left, and positive values indicate that they tend to move right,
while the absolute value indicates how strong the movement is (for a coherence
value of 0, points move randomly in all directions).

The subject must decide whether the movement is more towards the left or
right and indicate its choice by a saccade (either after a fixed period of time or
when the subject chooses depending on the setup).

When the experiment is done on animals, standard sigmoidal psychometric
curves are obtained, indicating that the task is correctly performed.

3.2 Network task

In our study, we are not interested in the visual processing part but rather
in understanding how a neural network might be able to perform the decision
making part of the task. Hence, we will assume that our network receives an
input signal that indicates the perceived direction of motion at each instant, and
that this signal will be a white noise with a mean sligthly positive or negative.
It must give an output signal equal to +1 if the input mean was positive or -1
otherwise.

19

Figure 3.1: Task structure (adapted from [GS07])

Figure 3.2: Left: psychometric curve for a trained rank one network. Right:
readout mean and standard deviation for different values of motion coherence,
for a trained rank one network.

3.3 Results

This task is very easy, and training a rank 1 network from scratch already gives
perfect result, with a perfect psychometric curve, and outputs that converge
towards the correct answer quicker depending on how hard it is to integrate the
evidence (see figure 3.2)

A second step after training is to understand how the network effectively does
the task. For this, we can look at the only eigenvalue of the network, which
is between 1.1 and 1.5 for most trainings and is equal to the overlap between
m and n. This indicates (given our theoretical analyses), that the network is
actually bistable, as can be confirmed by looking at the spontaneous activity
under 0 input (thanks to neuronal noise, the networks eventually chooses one
of the 2 stable states).

Hence, to do the task, the network only has to achieve 3 conditions:

20

Figure 3.3: Left: set of 20 psychometric curves for networks defined by equations
(3.1) - (3.4) with single set of parameters found after training and resampling of
the gaussian basis (N = 500). Right: readout for one such network for different
coherence values.

• the fixed point at 0 must be unstable (to force a choice) but sufficiently
slow, so that the network acts as an integrator around 0. This can be done
with an overlap 1

N nTm slightly bigger than 1.

• the input must be aligned with n or m so that it is integrated.

• the readout vector must be aligned with m since the stable points lie on
it, and its norm adjusted to have a value of ±1 at these points.

Finally, we should test our hypothesis that this is a sufficient mechanism by
reproducing ”by hand” a network that is able to do the task. For this, we define
a network defined by a very small number of parameters, with:

n =
√
ρx1 + αnx2 (3.1)

m =
√
ρx1 + αmx3 (3.2)

wo = wom (3.3)

wi = x4 + σnx2 + σmx3 (3.4)

where the vectors xi are random gaussian vectors (we assume that sampling
coefficients from gaussian distributions is sufficient to retrieve the desired be-
havior). We simply train the free parameters ρ, αn, αm, wo, σn, σm, so that
they reach exact values giving good integration behavior. We find a network
that is perfectly able to do the task, and remains able to do it whenever we re-
sample the xi and keep the parameters (see figure 3.3). Thus the computation
is done simply because of this simple arrangement between the vectors defining
the network.

One can note however some differences in behavior between the reproduced
and the trained networks. It appears that the trained network moreover uses a
mechanism with different populations that enables a finer control, but we will
not detail it as it is not essential to the computation.

21

Chapter 4

Rank two networks

We will now give an overview of the behaviors that can be observed in a rank
two network. For these networks, the equation (1.1) becomes:

τ ẋ = −x +
1

N
(m1n

T
1 + m2n

T
2)φ(x) + I (4.1)

Here the activity without input will decay towards the plane formed by m1

and m2, so that we can write:

x(t) = κ1(t)m1 + κ2(t)m2 + x⊥(t)

with x⊥ quickly decaying to 0.
Moreover, as explained in section 1.2, the same network can be parametrized

with different choices of m and n vectors due to a degeneracy, and in particular,
one can always choose a parametrization based on a SVD such that m1 is
orthogonal to m2, and n1 is orthogonal to n2. We will assume that it is always
this parametrization that is chosen.

4.1 Phase portrait of the autonomous system

To understand the dynamics of the autonomous system (ie. without an input),
it is sufficient to look at the dynamics on the plane m1, m2, that can be plotted
as a flow field in 2D.

The equations of the dynamics on the 2D system are:

τ κ̇1 = −κ1 +
1

N
nT1 φ(κ1m1 + κ2m2) (4.2)

τ κ̇2 = −κ2 +
1

N
nT2 φ(κ1m1 + κ2m2) (4.3)

that we can write in compact form as τ k̇ = F (k) where k = (κ1, κ2) and we
define F as the r.h.s. of the equations above.

It is insightful to look at the jacobian of this equivalent system in 0:

22

F ′(0) =

(
σ11 − 1 σ12
σ21 σ22 − 1

)
(4.4)

where σij = 1
N nTi mj . The eigenvalues of F ′(0) determine the stability of

the fixed point of the system at 0. Here are the possible behaviors of this system
when the vectors m and n are sampled from Gaussians, illustrated in figure 4.1:

• if both eigenvalues have a negative real part, the 0 fixed point is stable,
and is the only fixed point of the system: all trajectories end up at 0.

• if one eigenvalue has a positive real part, the other a negative one, the 0
fixed point is a saddle, and is thus stable in one direction, and unstable in
another one (see figure 4.1a). On the manifold of unstability lie 2 stable
fixed points, symmetric with respect to 0. Thus, the system is bistable.

• if both eigenvalues are real and positive and one is larger than the other,
then 0 is an unstable fixed point, and four fixed points lie on the manifolds
of unstability (see figure 4.1b). On the manifold associated with the larger
eigenvalue, the fixed points are stable, but on the manifold associated with
the smaller eigenvalue, the fixed points are saddles. Thus, the network
remains bistable with moreover 2 saddles.

• if both eigenvalues are real and positive and equal, then the whole plane is
formed of eigenvectors of the linearized system. Hence, we observe a ring
attractor surrounding the origin. (see figure 4.1c). We see on the figure
that the ring attractor is not perfect, but tends to exhibit a drift, due to
finite size effects.

• finally, if the eigenvalues are non-real but have a positive real part (which
corresponds to a strong asymmetry in the matrix F ′(0)), we will find a
limit cycle (see figure 4.1d).

4.2 Effect of multiple populations

One can look at what happens beyond Gaussian distributions for coefficients,
and it turns out that interesting behaviors beyond those described above start
to be visible when one uses multimodal distributions. Equivalently, one can look
at the behavior of a network composed of several populations of neurons, each
characterised by Gaussian distributions of coefficients. Those two descriptions
are mathematically equivalent.

To illustrate this, let us analyze an example where we choose the joint dis-
tributions of both (m1,n1) and (m2,n2) to be bimodal. More precisely, let us

23

(a) (b)

(c) (d)

Figure 4.1: Flow charts for the automous system with Gaussian vectors and for
4 choices of parameters (σ11, σ12, σ21, σ22) (N = 500 neurons): (a) saddle with
2 stable points for values (2.5, 0, 0.5, 0.5); (b) 2 saddles and 2 stable points for
values (2.5, 0, 0.5, 1.5); (c) ring attractor for (2, 0, 0, 2); (d) limit cycle for (2.5,
-1, 1, 2) (eigenvalues are 2.25± 0.97i). The lines and arrows represent the flow
(κ̇1, κ̇2) and the colors indicate the norm of the flow, small for blue and high
for yellow.
Fixed points are found with a numerical solver and are shown with the following
convention, used in the whole report: upwards triangles indicate sources (both
eigenvalues of the jacobian have positive real part), crosses indicate saddles (the
jacobian has one eigenvalue with positive real part and another with negative
real part), and downward triangles indicate stable fixed points (both eigenvalues
with negative real part)

24

take:

m1 =
√
σ11z1 + x1 (4.5)

n1 =
√
σ11z1 + x2 (4.6)

m2 =
√
σ22z2 + x3 (4.7)

n2 =
√
σ22z2 + x4 (4.8)

where we sample the xk from gaussian distributions and the zk from a bimodal
distribution (for example a distribution giving 1 or -1 with probability 1/2).
Let us for example choose σ11 = σ22 > 1. With only gaussian vectors, we
should obtain a ring attractor, but instead we obtain a flow field as in figure
4.2, with 8 fixed points around the origin, 4 of them stable and 4 of them saddles.

An equivalent description of this model would be with 4 populations of
vectors. Indeed, each neuron is characterized by the values z1 and z2 take on it.
Thus we can define population 1 as the neurons for which z1,i = 1 and z2,i = 1,
population 2 such that z1,i = 1 and z2,i = −1, population 3 such that z1,i = −1
and z2,i = 1, and finally population 4 such that z1,i = −1 and z2,i = −1. Hence,
by ordering the neurons by population one gets connectivity vectors defined by
population. For example for population 1:

m
(1)
1 = 1 + x1

n
(1)
1 = 1 + x2

m
(1)
2 = 1 + x3

n
(1)
2 = 1 + x4

For population 2:

m
(2)
1 = 1 + x1

n
(2)
1 = 1 + x2

m
(2)
2 = −1 + x3

n
(2)
2 = −1 + x4

and similarly we define vectors for populations 3 and 4. This structure becomes
quite apparent if we look at the connectivity matrix after ordering neurons by
populations as seen in figure 4.3.

Although this description seems complicated, the behavior of the network be-
comes trivially simple if one looks at the mean connexions between populations.
For example, we have for the mean connexion between neurons of population 1:

g11 = E[m
(1)
1 n

(1)
1 +m

(1)
2 n

(1)
2] = 2

for the mean connexion from neurons of population 1 to population 2:

g12 = E[m
(2)
1 n

(1)
1 +m

(2)
2 n

(1)
2] = 0

25

Figure 4.2: Left: low field for a network with bimodal joint distributions, dis-
playing 8 fixed points around the origin. Right: scatter plot showing the bi-
modality in the joint distribution of m1 and n1, or equivalently the fact that
there is more than one population of neurons.

and so on, where we compute the expectancies over the gaussian distributions
from which the coefficients are sampled. This results in the mean relations be-
tween populations illustrated in figure 4.4, consisting of two independent pairs
of populations with mutual inhibition, thus implementing winner-takes-all dy-
namics. Since the 2 pairs are independent and bistable, the whole network can
be in four stable states, as seen in figure 4.2. Note however that the populations
are not so strongly separated as in figure 4.4. The populations are in reality all
connected, but with the mean effects outlined on the figure.

26

Figure 4.3: Connectivity matrix for the example network, with populations
ordered in the same order as in text.

1

4

2

3

Figure 4.4: Equivalent model to the bimodal joint distributions network, with
subpopulations. Green arrows: excitation, red arrows: inhibition.

27

4.3 Effect of a constant input

As for the rank 1 case, with a constant input we can write the decomposition

I = I1m1 + I2m2 + I⊥

and write x(t) = κ1(t)m1 + κ2(t)m2 + λI⊥, which gives the equations:

τ κ̇1 = −κ1 +
1

N
nT1 φ(κ1m1 + κ2m2 + λI⊥) + I1 (4.9)

τ κ̇2 = −κ2 +
1

N
nT2 φ(κ1m1 + κ2m2 + λI⊥) + I2 (4.10)

τ λ̇ = −λ+ 1 (4.11)

and shows that the activity quickly decays to an affine plane defined by
I⊥ + V ect(m1,m2). Thus, in what follows, when we talk of a flow in presence
of an input, we will consider the flow in that affine plane.

The effect of an input having overlaps with either the mi or the ni vectors
is quite similar to the rank one case: such an input pushes the activity towards
one direction, eventually making some fixed points of the activity disappear in
saddle-node bifurcations. This is an important feature in computational tasks
since it enables the network to select one of the fixed points when receiving a
specific input.

However, another mechanism enables much more flexibility by modulating
the entire phase portrait behavior when receiving a certain input, and we will
focus on this mechanism since it is at the core of the study of the delayed
match-to-sample task.

4.3.1 Effective overlap modulation

For this, we will simply consider inputs orthogonal to both the mi or the ni
vectors. In this case, after having relaxed towards the stable affine plane of the
activity, the equations are simply:

τ κ̇1 = −κ1 +
1

N
nT1 φ(κ1m1 + κ2m2 + I) (4.12)

τ κ̇2 = −κ2 +
1

N
nT2 φ(κ1m1 + κ2m2 + I) (4.13)

that we can write as τ k̇ = F (k) and similarly to (2.8), the jacobian of the
r.h.s. in 0, that we will abusively note F ′(I) is:

F ′(I) =

(
σeff11 − 1 σeff12

σeff21 σeff22 − 1

)
(4.14)

where

σeffij =
1

N
nTi,effmj =

1

N
(ni � φ′(I⊥))Tmj (4.15)

28

is the effective overlap in presence of the input between ni and mj .
Thus, one way to change the phase portrait in presence of an input is to

choose the correlations between the input and the m and n vectors carefully to
obtain the desired effective overlaps. This is especially possible with different
populations, as illustrated in the following example.

Let us study an example of a network with 2 populations of neurons, in which
the phase portrait goes from bistable dynamics to a limit cycle in presence of

an input. For each population of neurons we define overlaps σ
(k)
ij , where k

represents the population. Let the xl be standard random Gaussian vectors.
We can build a population respecting the desired overlaps by defining:

n
(1)
1 = σ

(1)
11 x

(1)
1 + σ

(1)
12 x

(1)
2

n
(1)
2 = σ

(1)
21 x

(1)
3 + σ

(1)
22 x

(1)
4

m
(1)
1 = x

(1)
1 + x

(1)
3

m
(1)
2 = x

(1)
2 + x

(1)
4

and idem for population 2. The 2 populations can then be merged into a network

simply by concatenating the vectors: m1 = (m
(1)
1 ,m

(2)
1) and id for others.

Let us choose the following parameters:

σ
(1)
11 = σ

(2)
11 = 3

σ
(1)
22 = σ

(2)
22 = 2.5

σ
(1)
12 = σ

(2)
12 = 1

σ
(1)
21 = 1

σ
(2)
21 = −1

In this network, the only difference between the two populations lies in
the overlap between the vectors m1 and n2, that is positive in one case and
negative in the other. With no input, the overlaps σ21 cancel out overall such
that σ21 = 0, the jacobian is:

F ′(0) =

(
3 1
0 2.5

)
and we obtain a phase portrait with four fixed points, 2 of them stable, as

seen in figure 4.5.
Let us now choose an input I sampled from a gaussian with a high variance

on population 1, and a small variance on population 2. For example:

I(1) = 10x
(1)
5

I(1) = 0.1x
(1)
5

29

Figure 4.5: Phase portrait for the network given in example, without input on
the left and with presence of an input on the right.

that we can interpret as meaning that population 1 receives with a high prefer-
ence this input. The input has the effect of saturating preferentially the neurons
of population 1 while leaving those of population 2 untouched. Thus, the effec-
tive overlap σeff21 becomes dominated by the overlap on population 2, since the

term φ′(I(1)) ≈ 0 on population 1. Finally, σeff21 ≈ σ
(2)
21 = −1, and the jacobian

in presence of an input becomes:

F ′(I) =

(
2 1
−1 1.5

)
which is strongly asymmetric indicating the presence of a limit cycle. This is
indeed what we find when simulating this model: the phase portrait that is
bistable without input becomes a limit cycle in presence of the input (see figure
4.5).

Note that the fact that there are 2 distinct populations might not be readily
apparent when looking at simple scatter plots of the coefficients, as one can see
in figure 4.6. However, a more careful investigation can show that there is one
population of neurons with a positive overlap, that tend to be more saturated
in presence of the input, and a population of neurons with a negative overlap
that are less saturated with the input. To show this, one can separate the
neurons that are more saturated with the input (φ′(Ii) < 0.5) and those that
are less saturated (φ′(Ii) > 0.5). It then appears that the saturated neurons
form a group with a positive correlation between n2 and m1, while non-saturated
neurons form a group with a negative overlap, as shown by the linear regressions
on figure 4.6.

This example shows how an input can induce a very specific behavior, by
transforming bistable dynamics in a limit cycle. Moreover, the method used
to build this example network can easily be adapted to modify the jacobian as
desired, provided neuronal populations are carefully chosen at the beginning.

30

Figure 4.6: Left: coefficients n2 plotted against m1 for each neuron of the
example model. Right: Same coefficients, separated into saturated and non-
saturated neurons (see text), with linear regressions for each case, and linear
regression for all neurons in blue.

31

Chapter 5

Study on the delayed
match-to-sample task

We will now show that the mechanisms that we are able to understand analyti-
cally are powerful enough to understand how trained RNNs do a task. For this,
we study the delayed match-to-sample task (DMS).

5.1 Task and setup

In classical cognitive neuroscience studies, the DMS task consists of presenting
a first visual stimulus, that the subject must store in memory for a variable
delay period, and then presenting a second stimulus, that must be compared to
the first. The subject must give an answer depending on whether the stimuli
are identical or not (figure 5.1).

This task combines a working memory aspect with a non-trivial computa-
tion (equivalent to doing a XOR). Although working memory has been rather
well studied, notably in the context of attractor networks [AB97], there is little

time

+ + +

A

B

A

B

Fix

100 ms
Stimulus 1

500 ms

Delay

500 - 5000 ms

Stimulus 2

500 ms

Decision

same/di erent

300 ms

Figure 5.1: Task structure

32

litterature on the implementation of the computation [EW11].

As for the RDM task, we adapt it to a simplified setup: we assume that we
only have 2 stimuli, A and B. The network has 2 input channels, uA and uB , that
are set to 1 if the corresponding stimulus is being presented, and 0 otherwise.
At the end of the trial, ie after the second stimulus has been presented, the
readout must be +1 for a match, and -1 for a non-match.

Note that although the delay period is variable, forcing the network to im-
plement persistent activity between the stimuli, the presentation periods of the
stimuli are fixed, which enables our solutions to take advantage of the precise
timing of this presentation. This fact will be discussed later.

We have attempted to find a rank 1 network able to do the task, but trainings
have never converged to satisfying solutions. Thus, we hypothesize that the
minimal dimensionality needed to do this task is 2.

When training rank 2 RNNs on this task, we have consistently found 2
solutions that we present here. Although for each solution only one example
will be shown, actually multiple trainings have resulted in networks following
the same mechanism.

5.2 A first solution

We will present a first solution that is easy to understand in terms of effective
overlap modulation, and that has initially led us to postulate this mechanism.
All figures are made from one particular trained network (N = 500 neurons).

The network performs correctly the task, and as can be seen from figure 5.2,
its neurons present mixed and variable selectivities. A clearer picture of how
the network performs the task appears when looking at the activity projected
on the plane (m1,m2), as one can see in the four trajectories in figures 5.3 and
5.4.

We see that in this solution, the network is bistable when it does not receive
an input: notice the 2 stable fixed points in the first row of the panels. Receiving
input A initially sends the network state towards its bottom stable point, and
receiving input B sends it towards the top stable point. The interesting dynam-
ics appear when the second stimulus is received: if it is input A, the bistability is
maintained, thus leaving the network in the same stable state, whereas input B
replaces the stable points by a limit cycle, thus sending the network state to the
opposite fixed point. Thanks to this mechanism, the top stable point can cor-
respond to the non-match situation, and the bottom one to the match situation.

To explain how this mechanism emerges from the weights of the network,
one can first look at the effective jacobian of the system in 0, with and without
input, by using equations (4.4) and (4.14), and by computing the overlaps on
the trained network. We find:

33

F ′(0) =

(
3.2− 1 −0.4

1.4 1.8− 1

)

F ′(IA) =

(
2.1− 1 0

0.8 1.1− 1

)

F ′(IB) =

(
2.1− 1 −0.6

0.9 1.1− 1

)
We thus find a mechanism similar to the one outlined in section 4.3.1, where

the effective overlaps are modulated such that the jacobian becomes sufficiently
asymmetric in presence of input B to induce a limit cycle. However, in presence
of input A, the jacobian is shifted towards a more symmetric state, maintaining
the bistability.

Input B seems to act very specifically on the term σeff12 . We hypothesize that
input B acts similarly as the input in the example given in section 4.3.1: it tends
to saturate more selectively the neurons that create a positive overlap between
n1 and m2, ie neurons such that n1,im2,i > 0, than those that create a negative
overlap. To show this, let us plot the coefficients n1,i against m2,i, and separate
those that are more saturated in presence of input B (φ′(IB,i) < 0.5) and those
that are less saturated (φ′(IB,i) > 0.5). As seen in figure 5.5, the saturated
neurons tend indeed to be those inducing a positive overlap between these 2
vectors, leaving a negative overlap among the non-saturated neurons. One can
also notice on figure 5.6 that the neurons that contribute to a positive overlap
tend to be more saturated than the ones contributing to a negative overlap.

This mechanism can be understood if we postulate that the network is com-
posed of 2 populations of neurons, one with σ12 > 0 that saturates in presence
of input B, and one with σ12 < 0 that is insensitive to input B, as has been
shown in the example of section 4.3.1.

34

Figure 5.2: Network readout (top) and activity of 2 randomly sampled neurons
(below) for multiple trials when shown stimuli A-A (orange traces) and A-B
(blue traces). Stimulus presentation periods are indicated in gray

35

A-A A-B

Fix

Stimulus 1

Delay

Stimulus 2

Decision

Figure 5.3: Trajectories on first DMS network, for presentations of stimuli A-A
on left, and stimuli A-B on left. 36

B-A B-B

Fix

Stimulus 1

Delay

Stimulus 2

Decision

Figure 5.4: Trajectories on the first DMS network, for presentations of stimuli
B-A on the left and B-B on the right. 37

Figure 5.5: Coefficients n1,i against m2,i for each neuron, separated into sat-
urated and non-saturated neurons (see text), with linear regressions for each
group. In blue, the linear regression for the whole group.

Figure 5.6: Product of coefficients n1,im2,i against saturation φ′(IB,i) for each
neuron, with linear regression.

38

5.3 A second solution

A second solution has been found by training, albeit less often than the first
one that has been presented. It displays other interesting mechanisms that are
worth dissecting. As above, all plots are made for a specific trained network
with N = 500 neurons.

This solution exhibits 4 stable fixed points in its autonomous state, separated
by 4 saddles, as seen in figures 5.7 and 5.8. Two of the stable fixed points serve
to encode the memory of the first stimulus, the top fixed point corresponding to
stimulus B and the bottom one to stimulus A. Each stimulus has the effect of
keeping only 2 stable fixed points, the ones at the left and right, and they each
have the effect of separating the flow along a different diagonal of the phase
portrait. Thus, if the network was at the fixed point encoding the memory of
stimulus B for example, it will go in opposite directions if the second stimulus
is A or B. Hence, the left fixed point can encode the match situation, and the
right fixed point encode the non-match situation.

This network displays the kind of structure that has been described in section
4.2, hence it must some form of bimodality in its connectivity vectors. And
indeed, the existence of this bimodality in the trained network is quite apparent
when we look at the joint distribution of the coefficients of m1 and n1, as can
be seen in figure 5.9.

When adding the inputs as we have said, the 2 vertical stable fixed points
will merge with 2 of the saddles to create a bistable phase portrait. However
depending on the input, the points will merge with the saddle points on one of
the 2 diagonals. This can be done by modulating the rotational component of
the phase portrait, that is always present in the asymmetry of the jacobian. In
this example we find the following jacobians:

F ′(0) =

(
2.1 −0.5
−0.1 1.5

)

F ′(IA) =

(
1.15 0
−0.3 0.5

)

F ′(IB) =

(
0.9 −0.4
0. 0.5

)
We observe that with input A σeff12 > σeff21 while with input B σeff12 < σeff21 .

Hence, there is always an asymmetry in the network, but with opposite signs,
which induces rotations in opposite directions with input A and B and explains
why the stable points merge with different saddles in both cases. Although we
assume that the two outlined phenomena explain the behavior of the network,
we have not yet attempted to build it manually by lack of time.

39

A-A A-B

Fix

Stimulus 1

Delay

Stimulus 2

Decision

Figure 5.7: Trajectories on second DMS network, for presentations of stimuli A-
A on left, and stimuli A-B on left. We can observe the 4 stable fixed points, the
left one corresponding the match, the right one to non-match, and the bottom
one to stimulus A.

40

B-A B-B

Fix

Stimulus 1

Delay

Stimulus 2

Decision

Figure 5.8: Trajectories on the second DMS network, for presentations of stimuli
B-A on the left and B-B on the right. We see that the top fixed point serves as
memory for stimulus B. 41

Figure 5.9: Joint distribution of the coefficients m1,i and n1,i for each neuron,
scatter plot on the left, kernel density estimator on the right, displaying the
bimodality that enables the 4 stable fixed points to appear.

5.4 Further work

As we have noted before, our task is designed such that the stimuli are always
presented during a fixed interval of time, and our solutions heavily rely on this
fact: in solution 1, if the stimulus presentation was longer, the activity would
follow the limit cycle and end in the wrong fixed point. In solution 2, the
first stimulus presentation has to be short enough so that the activity does not
converge towards one of the fixed points with input, but it must end up near
one of the stable points that disappear with input.

It would be interesting to investigate further if a solution independent of the
precise timing of the presentation of the stimuli can be found in rank 2. Some
attempts at training such a network have not been successful, so we hypothe-
size that a rank 3 network would be necessary. However such a solution could
be not only insightful, but also more robust to perturbations of the task and
easier to reproduce by hand since it does not rely on precise timing mechanisms.

Finally, it would be interesting to show how to extend these mechanisms to
more than 2 inputs, and understand how the rank or the number of populations
has to grow to deal with more inputs.

42

Conclusion

We have shown that low-rank recurrent networks offer an interpretable model
while keeping powerful computational abilities. Notably, the dynamics of a
rank k network quickly converge towards a k dimensional subspace of the state
space, and can be understood via an equivalent k dimensional dynamical sys-
tem. Moreover, even in presence of a constant input, the dynamics are simply
translated towards a k dimensional affine subspace of the state space. Hence,
rank 1 and 2 networks are particularly interesting since their phase portraits
can be fully visualized, leading to interpretability of the observed activity.

Our strategy in this work has been to train low-rank RNNs on typical cog-
nitive neuroscience tasks, reverse-engineer the obtained networks, and try to
reproduce them. We have observed that for simple tasks like random dots mo-
tion, simple geometrical arrangements between the right and left eigenvectors
of the connectivity matrix are sufficient to realise the task. However, for more
complex tasks like delayed match-to-sample (DMS), trained networks exhibit
multimodal distributions of connectivity coefficients, that can alternatively be
interpreted as the presence of different populations in the network, and seem to
be essential to the realisation of the task.

The interpretation in terms of populations has enabled us to reproduce com-
plex dynamical features. For example, we have observed in one of the solutions
to DMS that a bistable network became oscillatory in presence of an input, a
phenomenon that could be reproduced by using 2 populations with different
connectivity statistics. The fact that this biological feature emerges without
being enforced during training suggests that it plays an essential computational
role, enriching the role played by dimensionality.

The models that have been found with our procedure are particularily ap-
pealing because they do not involve assigning groups of neurons to task-specific
roles as is done in many modelling studies [EW11]. Hence, the neurons of trained
RNNs naturally exhibit the mixed and variable selectivities that are observed
in neural recordings. To the question of the biological plausibility of low-rank
networks, and to the issues raised by their non-sparse connectivity matrices, one
could argue that they are a useful approximation of more complete RNN mod-
els. Indeed, observations tend to suggest that many features of full-rank RNNs
can be retained by lower rank ones while making huge gains in interpretability.

43

Finally, we have shown that although seemingly intractable, the behavior
of black-box networks realising complex tasks can be methodically dissected to
reveal the whole mechanism leading from the connectivity matrix to the com-
putation. We hope that this can form a basis for studying not only full-rank
RNNs but also biological networks. Indeed, current models attempting to ex-
tract information from high-dimensional neural recordings are often descriptive
(as dimensionality reduction algorithms, [CY14]), or difficult to interpret (like
LFADS [POC+18]). By understanding the dynamics of low-rank RNNs, we
hope that it will be possible to build models that combine the interpretability
of dimensionality reduction algorithms, with the predictive capacities of algo-
rithms like LFADS.

To attain this goal, much work remains to be done, notably in continuing
to characterize the different behaviors that can be found in low-rank networks.
It will be particularly interesting to look at the solutions that can be found in
rank 3 or 4 networks, that should be more difficult to interpret. It will also
be interesting to disentangle the computational roles that are played by the
dimensionality and by the cell populations, a work for which more task studies
should help.

44

Bibliography

[AB97] D. J. Amit and N. Brunel. Model of global spontaneous activity and
local structured activity during delay periods in the cerebral cortex.
Cerebral Cortex, 7(3):237–252, 1997.

[BM09] Dean V. Buonomano and Wolfgang Maass. State-dependent com-
putations: spatiotemporal processing in cortical networks. Nature
Reviews Neuroscience, 10(2):113–125, 2009.

[CY14] John P. Cunningham and Byron M. Yu. Dimensionality reduction
for large-scale neural recordings. Nature Neuroscience, 17(11):1500–
1509, 2014.

[EW11] Tatiana A. Engel and Xiao-Jing Wang. Same or different? a neural
circuit mechanism of similarity-based pattern match decision mak-
ing. Journal of Neuroscience, 31(19):6982–6996, 2011.

[GG15] Peiran Gao and Surya Ganguli. On simplicity and complexity in
the brave new world of large-scale neuroscience. Current Opinion
in Neurobiology, 32:148–155, 2015.

[GS07] Joshua I. Gold and Michael N. Shadlen. The neural basis of decision
making. Annual Review of Neuroscience, 30(1):535–574, 2007.

[MO18] Francesca Mastrogiuseppe and Srdjan Ostojic. Linking connectivity,
dynamics, and computations in low-rank recurrent neural networks.
Neuron, 99(3):609–623.e29, 2018.

[MSSN13] Valerio Mante, David Sussillo, Krishna V. Shenoy, and William T.
Newsome. Context-dependent computation by recurrent dynamics
in prefrontal cortex. Nature, 503(7474):78–84, 2013.

[POC+18] Chethan Pandarinath, Daniel J. OShea, Jasmine Collins, Rafal
Jozefowicz, Sergey D. Stavisky, Jonathan C. Kao, Eric M. Traut-
mann, Matthew T. Kaufman, Stephen I. Ryu, Leigh R. Hochberg,
Jaimie M. Henderson, Krishna V. Shenoy, L. F. Abbott, and David
Sussillo. Inferring single-trial neural population dynamics using se-
quential auto-encoders. Nature Methods, 15(10):805, 2018.

45

[SB12] David Sussillo and Omri Barak. Opening the black box: Low-
dimensional dynamics in high-dimensional recurrent neural net-
works. Neural Computation, 25(3):626–649, 2012.

[Sus14] David Sussillo. Neural circuits as computational dynamical systems.
Current Opinion in Neurobiology, 25:156–163, 2014.

[WNHJ18] Jing Wang, Devika Narain, Eghbal A. Hosseini, and Mehrdad Jazay-
eri. Flexible timing by temporal scaling of cortical responses. Nature
Neuroscience, 21(1):102, 2018.

[Yus15] Rafael Yuste. From the neuron doctrine to neural networks. Nature
Reviews Neuroscience, 16(8):487–497, 2015.

46

